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Disclaimer

These are notes from a course given by Claire Anantharaman-Delaroche during the minisemester
“Amenability beyond groups” at the Erwin Schrödinger Institute in Vienna in March 2007. The
reader is asked to bear in mind the informal nature of course notes.

1. Preliminaries

1.1. Amenability for groups. Let Γ be a discrete group.

Definition-Proposition 1.1. Γ is a amenable if one of the following equivalent conditions is
satisfied:

(1) ∀ ε > 0 ∀ F ⊂fin Γ ∃ f ∈ `1(Γ), f ≥ 0, ‖f‖1 = 1 max
s∈F

‖sf − f‖ ≤ ε,

(2) ∀ ε > 0 ∀ F ⊂fin Γ ∃ f ∈ `2(Γ), ‖f‖2 = 1 max
s∈F

‖sf − f‖ ≤ ε,

(3) ∀ ε > 0 ∀ F ⊂fin Γ there is a positive type function ϕ : Γ → C with finite support such
that max

s∈F

∣∣1− ϕ(s)
∣∣ ≤ ε.

Recall that a function ϕ : Γ → C is of positive type if

∀ n ∈ N ∀ s1, . . . , sn ∀ λ1, . . . , λn

n∑
i,j=1

λiλjϕ(s−1
i sj) ≥ 0.

An example of a positive type function is the coefficient functionaof a representation: let π be a
unitary representation of Γ on a Hilbert space H and let ξ ∈ H. The coefficient function is

Γ 3 t 7−→ 〈π(t)ξ ξ〉 .

Theorem 1.2 (Gelfand, Naimark, Segal). Every positive type function is a coefficient of a repre-
sentation. In particular if ϕ is a positive type function then

∣∣ϕ(s)
∣∣ ≤ ϕ(e) and ϕ(s−1) = ϕ(s) for

all s ∈ Γ.

1.2. Amenability for actions. Let X be a locally compact space and assume that Γ acts on X
from the left by homeomorphisms. We shall use the symbol Γ y X to denote this situation.

Definition-Proposition 1.3. The action Γ y X is a amenable if one of the following equivalent
conditions is satisfied:

(1) ∀ ε > 0 ∀ K b X ∀ F ⊂fin Γ there is a continuous function f : X → `1(Γ)+1 (i.e. with
values in positive norm one `1 functions) such that

max
(x,s)∈K×F

‖sfx − fsx‖1 ≤ ε,

(2) ∀ ε > 0 ∀K b X ∀ F ⊂fin Γ there is a continuous function f : X → `2(Γ)+1 such that

max
(x,s)∈K×F

‖sfx − fsx‖2 ≤ ε,

(3) ∀ ε > 0 ∀K b X ∀F ⊂fin Γ there is a positive type function h : X×Γ → C with compact
support such that

max
(x,s)∈K×F

∣∣1− h(x, s)
∣∣ ≤ ε.

A function h : X × Γ → C is of positive type if

∀ x ∈ X ∀ n ∈ N ∀ s1, . . . , sn ∀ λ1, . . . , λn

n∑
i,j=1

λiλjh(s−1
i x, s−1

i sj) ≥ 0.

Remark 1.4. If Γ is amenable then any action of Γ is amenable, but it is known that the free group
Fn acts amenably on its boundary.

aSuch functions are also called matrix elements of a representation.
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1.3. Group algebras.

Definition 1.5. A C∗-algebra is a closed ∗-subalgebra of B(H) for some Hilbert space H.

In particular for any element a of a C∗-algebra we have

‖a∗a‖ = ‖a‖2. (1.1)

Theorem 1.6 (Gelfand, Naimark). Let A be a Banach ∗-algebra such that ‖a∗a‖ = ‖a‖2 for all
a ∈ A. Then there is an isometric isomorphism of A onto a subalgebra of B(H) for some Hilbert
space H.

Here are some important observations:
(1) If A is a C∗-algebra and A 3 a = a∗ then ‖a2‖ = ‖a‖2 and this implies that ‖a‖ is equal

to the spectral radius of a.
(2) If B is another C∗-algebrab and π : A → B then

∥∥π(a)
∥∥ ≤ ‖a‖ for any a ∈ Aand π(A) is

closed in B. Moreover, if π is injective then it is isometric.

Example 1.7.
(1) B(H) is a C∗-algebra. In particularMn(C) is a C∗-algebra. Finite dimensional C∗-algebras

are finite products of full matrix algebras.
(2) If X is a locally compact space then C0(X) is a C∗-algebra. We have

Theorem 1.8 (Gelfand). Every Abelian C∗-algebra is of the form C0(X) for a uniquely
determined locally compact space X.

So now let Γ be a discrete group and let σ be a unitary representation of Γ on some Hilbert
space H. We can extend σ to a map C[Γ] by

σ
(∑

t∈Γ

ct t
)

=
∑
t∈Γ

ctσ(t).

We have ∥∥∥σ(∑
t∈Γ

ct t
)∥∥∥ ≤∑

t∈Γ

|ct|

Definition 1.9. The full group C∗-algebra of Γ is the completion of C[Γ] in the norm given for
c ∈ C[Γ] by

‖c‖ = sup
σ

∥∥σ(c)
∥∥

B(Hσ)
,

where the supremum is taken over all unitary representations of Γ. The full group C∗-algebra of
Γ is denoted by C∗(Γ).

There is a bijective correspondence between unitary representations of Γ and non degenerate
representations of C∗(Γ). The left regular representation λ : Γ → B

(
`2(Γ)

)
is injective on C[Γ] ⊂

C∗(Γ) and this gives a norm on the group algebra. The completion of C[Γ] in this norm is denote
by C∗r(Γ) and is called the reduced group C∗-algebra of Γ.

Since the norm of C∗r(Γ) is smaller than that of C∗(Γ), the formel algebra is a quotient of the
latter. The left regular representation gives the canonical quotient map C∗(Γ) → C∗r(Γ).

When Γ is amenable then every unitary representation of Γ is weakly contained in the regular
one. It can be shown that it follows from this that for any σ and any c ∈ C[Γ] we have∥∥σ(c)

∥∥
B(Hσ)

≤
∥∥λ(c)

∥∥
B
(
`2(Γ)

).
Therefore for Γ amenable λ : C∗(Γ) ∼−→ C∗r(Γ).

Theorem 1.10 (Hulanicki). If λC∗(Γ) ∼−→ C∗r(Γ) then Γ is amenable.

Example 1.11. Take Γ = Z. Then C∗(Γ) = C∗r(Γ) ' C(T).

bIn fact if B is a Banach ∗-algebra then π must be contractive as well.
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1.4. C∗-algebra associated with Γ y X. Let C0(X)[Γ] be the vector space of formal (finite)
sums ∑

t∈G

at t

with at ∈ C0(X). By α we shall denote the action of Γ lifted to C0(X):

αt(a)(x) = a(t−1x)

for all a ∈ C0(X), t ∈ Γ and x ∈ X. Now by introducing the following rule of commutation for
a ∈ C0(X) and t ∈ Γ

t a = αt(a)t
we can multiply elements of C0(X)[Γ]. For example

(a t)(b s) = aαt(b) st.

C0(X)[Γ] is a ∗-algebra with involution

(a t)∗ = t−1a = αt−1(a)t−1

Definition 1.12. A covariant representation of Γ y X in a Hilbert space H is a pair (π, σ)
consisting of a representation π of C0(X) on H and a unitary representation σ of Γ on H such
that

σ(t)π(a)σ(t−1) = π
(
αt(a)

)
for all a ∈ C0(X) and t ∈ Γ.

Any covariant representation of Γ y X gives a ∗-homomorphism π × σ : C0(X)[Γ] → B(H)

(π × σ)
(∑

t∈Γ

at t
)

=
∑
t∈Γ

π(at)σ(t).

Clearly ∥∥∥(π × σ)
(∑

t∈Γ

at t
)∥∥∥ ≤∑

t∈Γ

∥∥π(at)
∥∥.

Definition 1.13. The full crossed product of C0(X) by Γ is the completion of C0(X)[Γ] in the
norm

‖a‖ = sup
(π,σ)

∥∥(π × σ)(a)
∥∥

for any a ∈ C0(X)[Γ] (we take supremum over all covariant representations. We denote the full
crossed product by C0(X) o Γ.

Let us now present the analog of the reduced group C∗-algebra associated with Γ y X. Let π
be a representation of C0(X) on a Hilbert space H0. Let H = H0 ⊗ `2(Γ) = `2(Γ,H0). We can
define a covariant representation

(
π̃, λ̃

)
of Γ y X on H by(

π̃(a)ξ
)
(t) = π

(
αt−1(a)

)
ξ(t),(

λ̃sξ)(t) = ξ(s−1t)

for all ξ ∈ `1(Γ,H0), a ∈ C0(X) and all s, t ∈ Γ. Now the reduced crossed product of C0(X) by Γ
is the completion of C0(X)[Γ] in the norm

‖a‖ = sup
π

∥∥(π̃ × λ̃
)
(a)
∥∥ (1.2)

for all a ∈ C0(X)[Γ] and the supremum is taken over representations of C0(X). We denote the
reduced crossed product by C0(X) or Γ.

It can be shown that the supremum in (1.2) is attained for any injective π.
As in Subsection 1.3 we have the canonical quotient map

C0(X) o Γ −→ C0(X) or Γ. (1.3)

Theorem 1.14. If the action Γ y X is amenable then (1.3) is an isomorphism.
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2. Tensor products of C∗-algebras

Let A and B be C∗-algebras. For simplicity we will assume that both A and B have a unit.
There is an obvious ∗-algebra structure on the algebraic tensor product A � B and we will now
look for C∗-norms on A�B, so that we can complete A�B to obtain a C∗-algebra.c

One way to define such a norm is to embed A and B into B(H) and B(K) respectively for
some Hilbert spaces H and K. Then A � B ↪→ B(H ⊗K) and the operator norm on B(H ⊗K)
restricted to the image of A�B is a C∗-norm on A�B.

Definition 2.1. The minimal tensor product A⊗minB of A and B is the completion of A�B in
the norm

‖x‖min = sup
π1,π2

∥∥(π1 ⊗ π2)(x)
∥∥, (x ∈ A�B),

where the supremum is taken over all representations π1 and π2 of A and B respectively.

It is important to note that a result of Takesaki says that the supremum is in fact attained at
any pair of faithful representations.

Definition 2.2. The maximal tensor product A⊗max B of A and B is the completion of A� B
in the norm

‖x‖max = sup
π

∥∥π(x)
∥∥, (x ∈ A�B),

where the supremum is taken over all representations of A�B on Hilbert spaces.

The algebraic tensor product A � B is contained both in A ⊗max B and A ⊗min B, and since
‖ · ‖max ≥ ‖ · ‖min we have the canonical map A⊗max B → A⊗min B.

Example 2.3 (Takesaki (1964)). The norms ‖·‖max and ‖·‖min are different on the algebraic tensor
product C∗r(F2)� C∗r(F2).

Exercise 2.4. Let Γ1 and Γ2 be discrete groups. Prove that
(1) C∗(Γ1 × Γ2) = C∗(Γ1)⊗max C∗(Γ2),
(2) C∗r(Γ1 × Γ2) = C∗r(Γ1)⊗min C∗r(Γ2).

Solution. Ad (1). Any unitary representation of Γ1×Γ2 gives us a representation of C[Γ1×Γ2] =
C[Γ1] � C[Γ2] which extends uniquely to a representation of C∗(Γ1) � C∗(Γ2). Conversely any
representation of C∗(Γ1) � C∗(Γ2) restricts to a representation of C[Γ1] � C[Γ2] which, again by
restriction, gives a unitary representation of Γ1×Γ2. Now the equality C∗(Γ1×Γ2) = C∗(Γ1)⊗max

C∗(Γ2) follows from the definition of norm on the full group C∗-algebra and the norm on the
maximal tensor product (Definitions 1.9 and 2.2).

Ad (2). The regular representation of Γ1 × Γ2 acts on `2(Γ1 × Γ2) = `2(Γ1) ⊗ `2(Γ2) and
λ(s, t) = λ1(s)⊗λ2(t). Therefore C∗r(Γ1×Γ2) is by definition of the minimal tensor product equal
to C∗r(Γ1)⊗min C∗r(Γ2) (cf. Definition 2.1). �

Example 2.5. The tensor product Mn(C) � A is already a complete space in any tensor norm.
Therefore (by uniqueness of the norm on a C∗-algebra) we have

Mn(C)�A = Mn(C)⊗max A = Mn(C)⊗min A

and we write Mn(C)⊗A for this C∗-algebra.

3. Positive type functions and c.p. maps

Let A and B be (unital) C∗-algebras.

Definition 3.1. Let T : A → B be a linear map. We say that T is positive if it takes positive
elements to positive elements. For any n ∈ N we have Tn : Mn(A) →Mn(B) given by

Tn(ai,j) =
(
T (ai,j)

)
.

We say that T is completely positive (c.p.) if Tn is positive for all n.

cA C∗-norm is a norm satisfying the C∗-identity (1.1).
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Lemma 3.2. A linear map T : A→ B is completely positive if and only if for any n ∈ N and any
a1, . . . , an ∈ A the matrix (

T (a∗i aj)
)
∈Mn(B) (3.1)

is positive.

Proof. If T is c.p. then (3.1) is positive because the matrix

(a∗i aj) =


a∗1
a∗2
...
a∗n

(a1 a2 · · · an

)
(3.2)

is positive.
Conversely we can show that any matrix (ai,j) ∈ Mn(A)+ is a finite sum of matrices of the

form (3.2). This will end the proof of the lemma.
So let (ai,j) ∈Mn(A) be positive. There exists a matrix (bi,j) ∈Mn(A) such that

(ai,j) = (bi,j)∗(bi,j)

which means that ai,j =
∑n

k=1 b
∗
k,ibk,j . In other words

(ai,j) =
n∑

k=1

(b∗k,ibk,j).

�

Corollary 3.3. Let B ⊂ B(H). Then Mn(B) ⊂ B(Cn⊗H) and we have that T : A→ B is c.p. if
and only if for any n ∈ N, any a1, . . . , an ∈ A and any ξ1, . . . , ξn ∈ H we have

n∑
i,j=1

〈T (a∗i aj)ξi ξj〉 ≥ 0.

Lemma 3.4. Let Γ be a discrete group.
(1) Let ϕ : Γ → C be a positive type function. Then the map

mϕ : C[Γ] 3 c =
∑
t∈Γ

ct t 7−→
∑
t∈Γ

ϕ(t)ct t ∈ C[Γ]

extends uniquely to a c.p. map Φ : C∗r(Γ) → C∗r(Γ).
(2) Given a c.p. map Φ : C∗r(Γ) → C∗r(Γ), the function

ϕ : Γ 3 s 7−→
〈
Φ
(
λ(s)

)
λ(s)∗δe δe

〉
∈ C (3.3)

is of positive type.

Proof. For simplicity we shall assume that ϕ(e) = 1 (in point (1)) and that Φ is unital (in (2)).
Ad (2). Let ϕ be defined by (3.3) and chose s1, . . . , sn ∈ Γ. We have λ(s)δe = δs = ρs−1δe.

Therefore

ϕ(s∗i sj) =
〈
Φ
(
λ(si)∗λ(sj)

)
ρS−1

i
ρsj

δe δe

〉
=
〈
Φ
(
λ(si)∗λ(sj)

)
ρsj

δe ρsi
δe
〉
.

Now for any µ1, . . . , µn ∈ C we have
n∑

i,j=1

µiµjϕ(s−1
i sj) =

n∑
i,j=1

〈
Φ
(
λ(si)∗λ(sj)

)
µjρsj

δe µiρsi
δe
〉

which is positive because Φ is c.p. (cf. Corollary 3.3).
Ad (1). By Theorem 1.2 we have ϕ(s) = 〈π(s)ξ ξ〉 for some representation π of Γ on a Hilbert

space H and some ξ ∈ H. Define an isometry

S : `2(Γ) −→ `2(Γ,H)

by (Sf)(s) = f(s)π(s)∗ξ. For any c ∈ C[Γ] ⊂ C∗r(Γ) we have

mϕ(c) = S∗(c⊗ IH)S
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which clearly extends to a c.p. map C∗r(Γ) → C∗r(Γ). �

Recall that a discrete group Γ is amenable if an only if there is a net (ϕi) of positive type

functions with finite support such that ϕi(e) = 1 for all i and ϕi
pointwise−−−−−−→

i
1. Since the support

of each ϕi is finite, the image of the corresponding map mϕ is finite dimensional (equal to the
span of suppϕi considered as a subset of C[Γ] ⊂ C∗r(Γ)). Moreover, the net (mi) converges to the
identity map of C∗r(Γ) pointwise: ∥∥mϕi

(a)− a
∥∥ −→ 0

for any a ∈ C∗r(Γ).
The property that a C∗-algebra A has a net of finite rank c.p. maps A→ A converging pointwise

to idA is called the completely positive approximation property (c.p.a.p.). We have thus shown that
for an amenable discrete group Γ the reduced group C∗-algebra C∗r(Γ) has the c.p.a.p.

4. Nuclearity and amenability

As before we assume that all C∗-algebras are unital.

Definition 4.1. Let A and B be C∗-algebras.
(1) A u.c.p. map ψ : A→ B is called nuclear if there exists a net (ϕi) of finite rank u.c.p. maps

A→ B such that ∥∥ϕi(a)− ψ(a)
∥∥ −→ 0

for any a ∈ A.
(2) A is called nuclear if idA is a nuclear map.

Theorem 4.2 (Lance 1973). For a discrete group Γ the C∗-algebra C∗r(Γ) is nuclear if and only
if Γ is amenable.

Proof. We have already shown the “if” part at the end of Section 3. Assume that C∗r(Γ) is nuclear
and let (Φi) be a net of finite rank c.p.u. maps such that∥∥mΦ(a)− a

∥∥ −→ 0

for all a ∈ C∗r(Γ). Let
ϕi(s) =

〈
Φi

(
λ(s)

)
λ(s)∗δe δe

〉
.

By Lemma 3.4 (2) all ϕi are of positive type and it is easy to see that ϕi
pointwise−−−−−−→ 1 (as Φi

(
λ(s)

)
→

λ(s)). However we have not proved amenability of Γ yet because the supports of ϕi might not be
finite.

For this we need the following digresion: let Φ : C∗r(Γ) → C∗r(Γ) be a finite rank c.p.u. map.
Then

Φ(a) =
n∑

i=1

f(i(a)bi

for some f1, . . . , fn ∈ C∗r(Γ)′ and b1, . . . , bn ∈ C∗r(Γ). Let

ϕ(s) =
n∑

i=1

fi

(
λ(s)

)
〈biλ(s)∗δe δe〉 .

We claim that ϕ is in `2(Γ). Indeed each of the functions

s 7−→ fi

(
λ(s)

)
〈δs−1 b∗i δe〉

is in `2(Γ) (its values are Fourier coefficients of a vector in `2(Γ). A theorem of Godement says that
a positive type function which is in `2(Γ) is necessarily a coefficient of the regular representation.
In other words it is of the form

s 7−→ 〈λ(s)g g〉
for some g ∈ `2(Γ). It is therefore approximable pointwise (so almost uniformly – as Γ is discrete)
by functions with compact support (we simply approximate g).

By the reasoning above one can approximate the functions (ϕi) by functions with finite support

without destroying the property that ϕi
pointwise−−−−−−→ 1. This proves amenability of Γ. �
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The next theorem has a very similar proof.

Theorem 4.3. Let Γ y X be an action. Then Γ y X is amenable if and only if C0(X) or Γ is
nuclear.

The class of nuclear C∗-algebras contains all commutative C∗-algebras, all finite dimensional
C∗-algebras as well as tensor products and inductive limits of those. It is also closed under taking
extensions. However the algebra B(H) is not nuclear.

4.1. Approximation properties.

Definition 4.4. Let E be a Banach space.
(1) E has the Grothendieck approximation property if idE is a norm limit on compact subsets

of a net (Ti) of finite rank operators.
(2) E has the metric approximation property if it has the Grothendieck approximation prop-

erty and the net (Ti) can be chosen to consist of contractions.

A nuclear C∗-algebra has the metric approximation property.

Theorem 4.5 (Szankowski (1981)). B(H) does not have the Grothendieck approximation property.

Theorem 4.6 (Haagerup (1978)). The C∗-algebra C∗r(F2) has the metric approximation property.

Note that we know from Theorem 4.2 that C∗r(F2) is not nuclear, i.e. it does not have the
completely positive approximation property.

Theorem 4.7 (Kirchberg, Choi). A C∗-algebra A is nuclear if and only if for any C∗-algebra B
the canonical map A⊗max B → A⊗min B is injective.

In particular nuclearity of A is equivalent to the fact that for any B there is a unique C∗-norm
on A�B.

It turns out that a subalgebra of a nuclear algebra need not be nuclear.

Example 4.8. Let Γ be a discrete group acting amenably on a compact space X (e.g. Γ = F2 and
X = ∂F2 which is topologically a Cantor set, while the action is amenable). Then C∗r(Γ) is not
nuclear if Γ is not amenable, but C∗r(Γ) ↪→ C(X) or Γ with the last algebra nuclear by Theorem
4.3.

5. Exactness and boundary amenability

Definition 5.1. A C∗-algebra A is exact (or nuclearly embeddable) if there exists a nuclear
embedding of A into some C∗-algebra D.

Observe that any subalgebra of a nuclear C∗-algebra is exact (by composing the embedding
with finite rank c.p.u. approximations of the identity).

Theorem 5.2 (Kirchberg). Any exact C∗-algebra can be embedded into a nuclear C∗-algebra.

In order to explain the terminology introduced above let us turn to the following problem. Let
us fix A and consider the functor B 7→ A⊗min B. Now if

0 // I // B // B/I // 0

is an exact sequence of C∗-algebras it can happen that

0 // A⊗min I // A⊗min B // A⊗min B/I // 0

is not exact (in the middle). This means that the functor B 7→ A⊗min B might fail to be exact.
An explicit example of this was given by Simon Wassermann in 1977. He proved that if

I ⊂ C∗(F2) is the kernel of the canonical map C∗(F2) → C∗r(F2) then the sequence

0 // C∗(F2)⊗min I // C∗(F2)⊗min C∗(F2) // C∗(F2)⊗min C∗r(F2) // 0

is not exact.
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Theorem 5.3 (Kirchberg). A C∗-algebra A is nuclearly embeddable if and only if the functor
B 7→ A⊗min B is exact.

Note that Wassermann’s example shows that C∗(F2) is not exact, but we have proved that
C∗r(F2) is exact (cf. Example 4.8).

Question 5.4. Let Γ be a discrete group. Assume that C∗(Γ) is exact. Is Γ amenable?

Question 5.4 has been solved positively for many groups (e.g. maximally almost periodic
groups), but the general statement remains open.

Definition 5.5. A discrete group Γ is exact if C∗r(Γ) is exact.

Example 5.6.
• Free groups are exact,
• hyperbolic groups are exact (Adams, Germain),
• every discrete subgroup of a connected locally compact group is exact,
• Gromov and Ozawa have shown that there exists a non exact group.

Theorem 5.7 (Ozawa, Anantharaman-Delaroche (2000)). Let Γ be a discrete group. Then(
C∗r(Γ) is exact

)
⇐⇒

(
Γ has an amenable action on a compact space

)
.

Proof. The “⇐” part is contained in Example 4.8.
Let us prove the “⇒” part. The first remark is that if a C∗-algebra A embeds nuclearly into some

C∗-algebra D then any embedding of A into B(H) is also nuclear.d This means that the inclusion
C∗r(Γ) ↪→ B

(
`2(Γ)

)
is nuclear. Let (φk) be the net of finite rank u.c.p. maps approximating this

inclusion.
Define

hk(s, t) =
〈
φk

(
λ(s)

)
λ(s)∗δs δs

〉
. (5.1)

Then hk : Γ× Γ is a continuous and bounded function (
∣∣hk(s, t)

∣∣ ≤ 1 for all s, t). We can extend
hk to a continuous map βΓ× Γ → C.

The group Γ acts on βΓ and it will be enough to show that this action is amenable. To that end
recall from Definition-Proposition 1.3 that this action is amenable if and only if there exists a net
(hk) of positive type functions with compact support which converges to 1 uniformly on compact
subsets of βΓ× Γ.

We claim that the functions hk defined by (5.1) are of positive type (cf. text preceeding Remark
1.4).

We will prove that for any x ∈ Γ, any n ∈ N and any s1, . . . , sn ∈ Γ the matrix(
hk(s−1

i x, s−1
i sj)

)
is positive (this will be enough by continuity).

We have

hk(s−1
i x, s−1

i sj) =
〈
φk

(
λ(si)∗λ(sj)

)
λ(sj)∗λ(si)δs−1

i x δs−1
i x

〉
=
〈
φk

(
λ(si)∗λ(sj)

)
δs−1

j x δs−1
i x

〉
,

so for µ1, . . . , µn ∈ C we have
n∑

i,j=1

µiµjhk(s−1
i x, s−1

i sj) =
n∑

i,j=1

〈
φk

(
λ(si)∗λ(sj)

)
µjδs−1

j x µiδs−1
i x

〉
≥ 0

because φk is completely positive (cf. Corollary 3.3).
It is not hard to show that hk(s, t) → 1 uniformly on compact subsets of βΓ× Γ, but as in the

proof of Theorem 4.2 the supports of (hk) might not be compact. This is a technical point which
can be overcome by appropriate approximation. �

dThis follows from Arveson’s theorem which says that B(H) is an injective operator system, which means in
this case that if ı is the injection of A into D and  is the inclusion of A into B(H) then there exists a u.c.p. map

ψ : D → B(H) such that ψ◦ı = . In particular, if (Φk) is the net of finite rank u.c.p. maps approximating ı then 
can be approximated by finite rank u.c.p. maps Φk◦ı : A→ B(H).
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The property of admitting an amenable action on a compact space is called boundary amena-
bility.

Let us recall from Definition 1.3 (3) that the action of Γ on βΓ is amenable if

∀ ε > 0 ∀ E ⊂fin Γ ∃ h : βΓ× Γ → C, of positive type ∃ E′ ⊂fin Γ

such that
(1) sup

(x,s)∈βΓ×E

∣∣1− h(x, s)
∣∣ ≤ ε,

(2) supph ⊂ βΓ× E′.
Since h is continuous we can replace (2) with

sup
(x,s)∈Γ×E

∣∣1− h(x, s)
∣∣ ≤ ε

and consider instead h : Γ× Γ → C. The fact that h is of positive type is that for any n ∈ N, any
x ∈ Γ and any s1, . . . , sn ∈ Γ the matrix (

h(s−1
i x, s−1

i sj

)
(5.2)

is positive.
We will now make a change of variables. Let

J : Γ× Γ 3 (s, t) 7−→ (s−1, s−1t) ∈ Γ× Γ

and let k = h◦J . This means that we have

k(s, t) = h
(
s−1, s−1t). (5.3)

In particular supp k is in the “strip” {
(s, t) s−1t ∈ E′

}
.

Moreover we have
sup

s−1t∈E

∣∣1− k(s, t)
∣∣ ≤ ε.

and k is a positive kernel in the usual sense, i.e. for any n ∈ N and any s1, . . . , sn ∈ Γ the matrix(
k(si, sj)

)
is positive (this is because of (5.3) and positivity of (5.2) with x = e).

We have thus shown the following:

Theorem 5.8. Let Γ be a discrete groups. Then Γ is exact if and only if

∀ ε > 0 ∀ E ⊂fin Γ ∃ k : Γ× Γ → C, bounded, of positive type ∃ E′ ⊂fin Γ

such that
(1) sup

s−1t∈E

∣∣1− k(s, t)
∣∣ ≤ ε,

(2) supp k ⊂
{
(s, t) s−1t ∈ E′

}
.

Note that the conditions describing exactness of Γ are expressed without using the group struc-
ture of Γ. In fact exactness is a metric concept in the sense described below.

Assume that Γ is finitely generated and consider the metric d given by word length function
with respect to some set of generators of Γ. The d is left invariant metric.

Corollary 5.9. Γ is exact if and only if

∀ ε > 0 ∀R > 0 ∃ k : Γ× Γ → C, bounded, of positive type ∃R′ > 0

such that
(1)

∣∣1− k(s, t)
∣∣ ≤ ε if d(s, t) ≤ R,

(2) k(s, t) = 0 if d(s, t) ≥ R′.
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Definition 5.10. Let (X, d) be a countable metric space. We say that (X, d) is exact if

∀ ε > 0 ∀R > 0 ∃ k : X ×X → C, bounded, of positive type ∃R′ > 0

such that
(1)

∣∣1− k(x, y)
∣∣ ≤ ε if d(x, y) ≤ R,

(2) k(x, y) = 0 if d(x, y) ≥ R′.

Remark 5.11. A function (kernel) k : X ×X → C is of positive type if and only if there exists a
Hilbert space H and a map ξ : X 3 x 7→ ξx ∈ H such that k(x, y) = 〈ξx ξy〉.

Proposition 5.12. (X, d) is exact if

∀ ε > 0 ∀R > 0 ∃Hilbert space H and ξ : X → H1 ∃R′ > 0

such that
(1)

∣∣1− 〈ξx ξy〉
∣∣ ≤ ε if d(x, y) ≤ R,

(2) 〈ξx ξy〉 = 0 if d(x, y) ≥ R′.

In all of our consideratios we can take the Hilbert space to be real and replace k by its real part
(it remains positive type). Then condition (1) of Proposition 5.12 can be raplaced by

‖ξx − ξy‖ ≤ εif d(x, y) ≤ R

because in a real Hilbert space ‖ξx − ξy‖1 = 2
(
1− 〈ξx ξy〉

)∣∣.
6. Yu’s property (A)

Let (X, d) be a metric space with bounded geometry, i.e. for any R > 0 there exists N ∈ N
such that for any x ∈ X the cardinality #B(x,R) is smaller than N .

In what follows we shall denote by F(S) the set of all finite subsets of a set S.

Definition 6.1 (Yu’s property (A)). (X, d) has property (A) if

∀ ε > 0 ∀R > 0 ∃A : X → F(X ×N) ∃R′ > 0

such that

(1)
#
(
A(x) M A(y)

)
#
(
A(x) ∩A(y)

) ≤ ε if d(x, y) ≤ R,

(2) ∃R′ > 0 ∀ x ∈ X A(x) ⊂ B(x,R′).

Theorem 6.2 (Higson, Roe (2000)). Yu’s property (A) is equivalent to exactness (Definition
5.10).

Sometimes exact groups are called groups with property (A).

7. Exactness and uniform embeddability

Definition 7.1. A metric space (X, d) is uniformly embeddable into a Hilbert space if there exists
a Hilbert space H, a map f : X → H and two functions ρ1, ρ2 : R+ → R such that both ρi are
non decreasing, lim

t→∞
ρi(t) = ∞ and for any x, y ∈ X we have

ρ1

(
d(x, y)

)
≤
∥∥f(x)− f(y)

∥∥ ≤ ρ2

(
d(x, y)

)
.

Proposition 7.2 (Dădărlat-Guentner). A metric space (X, d) is uniformly embeddable into a
Hilbert space if andonly if

∀ ε > 0 ∀R > 0 ∃Hilbert space H and ξ : X → H1 ∃R′ > 0

such that
(1) ‖ξx − ξy‖ ≤ ε if d(x, y) ≤ R
(2) lim

r→∞
sup

d(x,y)≥r

∣∣〈ξx ξy〉
∣∣ = 0.

Idea of proof (in one direction). Recall a that a function k : X × X → R is a symmetric kernel
conditionally of negative type with zero diagonal if
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• k(x, x) = 0 for all x ∈ X,
• k(x, y) = k(y, x) for all x, y ∈ X,

• ∀ n ∈ N ∀ x1, . . . , xn ∈ X ∀ λ1, . . . , λn ∈ R such that
n∑

i=1

λi = 0

n∑
i,j=1

λiλjk(xi, xj) ≤ 0.

It is known that a symmetric kernel k with zero diagonal is conditionally of negative type if
and only if there exists a real Hilbert space H and a function f : X → H such that k(x, y) =∥∥f(x)− f(y)‖2 for all x, y ∈ X.e

Theorem 7.3 (Schönberg). A symmetric kernel k with zero diagonal is conditionally of negative
type if and only if for any t > 0 the function (x, t) 7→ exp

(
−tk(x, y)

)
is of positive type.

We are now in position to prove the implication “⇒”, i.e. that uniform embeddability of (X, d)
into a Hilbert space implies exactness.

Let f : X → H be a uniform embedding of X into a Hilbert space H with control functions
ρ1, ρ2. For t > 0 define

ht(x, y) = exp
(
−t
∥∥f(x)− f(y)

∥∥2)
.

Take R > 0 and x y ∈ X such that d(x, y) ≤ R. Then since

ht(x, y) = e−t
∥∥f(x)−x(y)

∥∥2

≤ e−tρ2

(
d(x,y)

)2
≤ e−tρ2(R)2

(ρ2 is non decreasing) we have ∣∣1− ht(x, y)
∣∣ ≤ exp

(
−tρ2(R)2

)
. (7.1)

We can therefore take now t such that (7.1) is smaller than ε.
On the other hand, if d(x, y) > r then

ht(x, y) ≤ exp
(
−tρ1

(
d(x, y)

)2) ≤ exp
(
−tρ1(r)2

)
and the last term on the right hand side goes to 0 as r →∞. �

Corollary 7.4 (Yu). Every metric space with bounded geometry and property (A) is uniformly
embeddable into a Hilbert space. In particular exact groups are uniformly embeddable into a Hilbert
space.

Let us investigate further the relation between uniform embeddability and exactness. The most
suitable definitions of these properties are contained in Proposition 7.2 and Proposition5.12.

Assume that we have a function (kernel) h : Γ× Γ → R. We say that h is Γ-invariant if

h(sx, sy) = h(x, y)

for all s, x, y ∈ Γ. If h is invariant then h is encoded in a function of one variable ϕ(t) = h(e, t). In
this case h is a positive type kernel if and only if ϕ is a function of positive type (simply because
ϕ(s−1t) = h(s, t). Also conditions (1) and (2) of Proposition 5.12 read

(1)
∣∣1− ϕ(t)

∣∣ ≤ ε if `(t) ≤ R,
(2) ϕ(t) = 0 if `(t) ≥ R′,

where ` is the word length function on Γ. Note that this is nothing but the definition of amenability
(cf. Definition-Proposition 1.1 (3)).

In other words the invariant analog of exactness is amenability.
In the same way the invariant analog of uniform embeddability is a-T-menability (then we get

ϕ ∈ C0(Γ) not of compact support).
We have the following diagram of known and unknown relationships between various properties

of finitely generated groups (question marks indicate open problems):

eSometimes this statement is referred to as Schönberg’s theorem.



AMENABILITY AND EXACTNESS FOR GROUP ACTIONS AND OPERATOR ALGEBRAS 13

amenability ,2

��

a-T-menability

?
ppppp
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t| ppp
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��

exactness ,2 uniform embeddability

?ai

Let us mention that Gromov has indirectly shown that there is finitely generated group which is
not uniformly embeddable into a Hilbert space.

7.1. Compression constants and uniform embeddability. Let f : Γ → H be a uniform
embedding with control functions ρ1, ρ3. First we note that ρ2 can always be taken affine. Indeed
if we look at x, y ∈ Γ and take a geodesic path (x = x0, x1, . . . , xn−1, xn = y) from x to y (so the
distance between xi and xi+1 is one and d(x, y) = n) then∥∥f(x)− f(y)‖ ≤

n∑
i=1

∥∥f(xi)− f(xi−1)
∥∥ ≤ ρ2(1)d(x, y).

Definition 7.5 (Gromov). The compression function of a uniform embedding f : Γ → H is the
function ρf : R+ → R+ given by

ρf (r) = inf
d(x,y)≥r

∥∥f(x)− f(y)
∥∥.

The compression function is non decreasing. Moreover for any r ∈ R+

ρ1(r) ≤ ρf (r)

and
ρf

(
d(x, y)

)
≤
∥∥f(x)− f(y)

∥∥
for all x, y ∈ X.

Definition 7.6 (Gromov). The asymptotic compression constant of a uniform embedding f : Γ →
H is

Rf = sup
{
α ≥ 0 ∃ a, b > 0 tα ≤ aρf (t) + b for all t > 0

}
.

The observation at the beginning of this subsection shows that Rf ∈ [0, 1].

Example 7.7. Take Γ = F2 an let E be the set of edges of the Cayley graph of F2. We have a
uniform embedding f : F2 → `2(E) such that d(x, y) =

∥∥f(x)
∥∥2 for all x, y ∈ F2. It is defined as

follows: let w be a word in F2. There is a unique geodesic path from e to w in the Cayley graph
of F2. If this path is (e1, . . . , en) with ei ∈ E we let

f(w) =
n∑

i=1

δei
.

In this case Rf = 1
2 .

Example 7.8. If f is a quasi isometric embedding (i.e. a uniform embedding with ρ1 – an affine
function) then Rf = 1.

Definition 7.9. The Hilbert space compression constan of Γ is

R(Γ) = sup
f
Rf

(the supremum is over all uniform embeddings f of Γ into a Hilbert space).
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Clearly R(Γ) ∈ [0, 1]. We have R(F2) = 1 and for any ε > 0 a uniform embedding f of F2

into a Hilbert space such that Rf ≥ 1− ε can be constructed by a modification of Example 7.7
(Bourgain (1986), Guentner-Kaminker (2004)).

Note that the supremum R(F2) = 1 is never attained because if it were, the free group would
embed quasi isometrically into a Hilbert space. By results of Bourgain (the 3-regular tree is not
embeddable quasi isometrically into a Hilbert space) this is not possible.

Theorem 7.10 (Guentner-Kaminker). If R(Γ) > 1
2 then Γ is exact.

Before giving a sketch of the proof of Theorem 7.10 let us mention that In a 2006 paper
Arzhentzeva, Drutu and Sapir showed that for any α ∈ [0, 1] there exists an exact group Γ with
R(Γ) = α. For example, for Γ = Z o Z, we have 2

3 ≤ R(Γ) ≤ 3
4 and R(Γ o Z) 1

2 . Moreover by
iterating the wreath product we can get R(Γ) arbitrarily small while Γ = (· · · (Z o Z) o Z) o · · · ) o Z
is not only exact, but also amenable.

Sketch of proof of Theorem 7.10. The assumption is that there exists α > 0, a uniform embedding
f : Γ → H and r0 > 0 such that

d(x, y)
1
2+α ≤

∥∥f(x)− f(y)
∥∥ (7.2)

is d(x, y) ≥ r0.
For t > 0 consider

ht(x, y) = exp
(
−t
∥∥f(x)− f(y)

∥∥2)
.

ht is of positive type (cf. proof of Proposition 7.2).
In what follows we will write h for h1. We need to show that for any ε > 0 there exists a kernel

k : Γ × Γ → R of positive type such that ‖h − k‖∞ ≤ ε and k is of finite propagation, i.e. its
support is in the “strip”

{
(x, y) d(x, y) ≤ R

}
.

First let us check that we have

lim
n→∞

sup
x∈Γ

( ∑
y: d(x,y)≥n

h(x, y)
)

= 0.

Indeed, fix x ∈ Γ and let r ≥ r0. We have by definition of h and (7.2)∑
d(x,y)≥n

h(x, y) =
∑
m≥n

∑
d(x,y)=m

h(x, y)

≤
∑
m≥n

∑
d(x,y)=m

exp
(
−d(x, y)1+2α

)
=
∑
m≥n

∑
d(x,y)=m

exp
(
−m1+2α

)
.

Now note that the number of elements of
{
y d(x, y) = m

}
is less or equal than (#S)m where S

is the symmetric set of generators of Γ giving the word length metric. Therefore∑
d(x,y)≥n

h(x, y) ≤
∑
m≥n

(#S)m exp
(
−m1+2α

)
=
∑
m≥n

(#S)m

exp
(
mm2α

)
=
∑
m≥n

(
#S

exp
(
m2α

))m

≤
∑
m≥n

(
#S

exp
(
n2α
))m

−−−−→
n→∞

0.

The proof will be finished when we prove that the following lemma:
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Lemma 7.11. Let h : Γ× Γ → R+ be positive type kernel such that

c = sup
x∈Γ

∑
y∈Γ

h(x, y) <∞.

and
cn = sup

x∈Γ

( ∑
y: d(x,y)≥n

h(x, y)
)
−−−−→
n→∞

0. (7.3)

Then for any ε > 0 there exists a positive type kernel k : Γ× Γ → R such that ‖h− k‖∞ < ε and
k is of finite propagation.

Proof of Lemma 7.11. The kernel h defines Oph ∈ B
(
`2(Γ)

)
byf(

(Oph)ξ
)
(x) =

∑
y∈Γ

h(x, y)ξ(y).

One checks that Oph is bounded and ‖Oph‖ ≤ c. Let hn be the cut-off of h

hn(x, y) =

{
0 d(x, y) > n,

h(x, y) d(x, y) ≤ n.

Thus defined hn is not of positive type, but we have

‖Op(h− hn)‖ ≤ cn. (7.4)

Let C∗u(Γ) be the C∗-algebra of operators on `2(Γ) generated by Op k for all kernels k of finite
propagation.g

Now Oph ∈ C∗u(Γ) because of (7.4) and (7.3) and Oph si positive. Let T =
√

Oph. Then
T ∈ C∗u(Γ). We can therefore approximate T by kernels with finite propagation. More precisely,
for any η > 0 there exists a finite propagation kernel k′ such that

‖T −Op k′‖ ≤ η.

Denote V = Op k′ and let
k(x, y) = 〈V δx V δy〉

Then k is a positive type kernel with finite propagation. Now∣∣h(x, y)− k(x, y)
∣∣ = ∣∣〈(T ∗T − V ∗V )δx δy〉

∣∣ ≤ ‖T ∗T − V ∗V ‖
which we can make arbitrarily small. �

�

fThis is why h is called a “kernel”.
gThis is the Roe algebra; it is isomorphic to C(βΓ) or Γ.


